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Front Matter Preface

Introduction

A Lie algebra is a vector space equipped with an additional multiplication operation that is typically
non-associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth
manifolds; every Lie group induces a Lie algebra as the tangent space at the identity, in which case, the
Lie bracket measures the failure of commutativity for the Lie group.

Conversely, to any finite-dimensional Lie algebra over the R or C, there is a corresponding connected Lie
group. This correspondence allows us to study the structure and classification of Lie groups in terms of
Lie algebras.

Lie groups and Lie algebras find extensive applications in physics – in particular, quantum and particle
mechanics – where Lie groups arise as symmetry groups of physical systems and their Lie algebras may
be interpreted as infinitesimal symmetry motions of those systems.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2024-10-17∗

Current Edition: 2024-10-17

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MAH453 Lie Algebras

1 Lie Algebras

All of the vector spaces we consider will be finite dimensional over a field K.

A Lie bracket on a vector space L is a bilinear map [−,−] : V × V → V with the additional properties:

(L1) (Alternation) For all x ∈ L, [x,x] = 0;

(L2) (Jacobi identity) For all x,y,z ∈ L,
[
x,[y,z]

]
+
[
z,[x,y]

]
+
[
y,[x,z]

]
= 0.

The pair
(
L,[−,−]

)
is then called a Lie algebra over K. We often suppress the Lie bracket and the field,

and refer to a Lie algebra by the underlying vector space L.

The dimension of a Lie algebra L is the dimenion of L as a vector space.

Lemma 1.1 (Anticommutativity). Let L be a Lie algebra. Then, for all x,y ∈ L,

[x,y] = −[y,x]

Proof. By (L1), for all x,y ∈ L, [x+ y,x+ y] = 0, so by bilinearity, [x,x] + [x,y] + [y,x] + [y,y] = 0. Again
by (L1), [x,x] = 0 = [y,y], so [x,y] + [y,x] = 0, and hence [x,y] = −[y,x]. ■

Lemma 1.2. If char(K) ̸= 2, then the alternating property is equivalent to anticommutativity.

Proof. The forward implication is shown in the previous lemma. Conversely, suppose L satisfies (L2)
and anticommutativity. Then, [x,x] = −[x,x], so 2[x,x] = 0. Since the characteristic of K is not 2, 2 is
invertible, so [x,x] = 0. ■

Example.

(i) Let V be any vector space and define [−,−] : V ×V → V to be the constant zero vector map. This
bracket trivially satisfies the Lie bracket axioms, so

(
V,[−,−]

)
is a Lie algebra, called an abelian

Lie algebra.

Every 1-dimensional Lie algebra is necessarily abelian since if e is the basis element, then [a,b] =
[αe,βe] = αβ[e,e] = 0.

(ii) Let L = R3 be a vector space over R. The cross product satisfies the Lie bracket axioms, so R3 is
a Lie algebra over R.

(iii) Consider the set L = Mn(K) of n× n matrices with entries in K as a n2-dimensional vector space
over K. Define the bracket [−,−] : L× L → L by

[A,B] = AB −BA

This is linear in the first argument:

[λA+ µB,C] = (λA+ µB)C − C(λA+ µB) = λ(AC − CA) + µ(BC − CB) = λ[A,C] + µ[B,C]

and since [A,B] = AB − BA = −(BA − AB) = −[B,A], we also have linearity in the second
argument. The bracket is also alternating since [A,A] = AA−AA = 0. We also have:[

A,[B,C]
]
= [A,BC − CB]

= A(BC − CB)− (BC − CB)A

= ABC −ACB −BCA+ CBA[
C,[A,B]

]
= CAB − CBA−ABC +BAC[

B,[C,A]
]
= BCA−BAC − CAB +ACB

Lie Algebras | 1



MAH453 1.1 Structure Constants

The 12 terms are the positive and negatives of the permutations of A, B, and C, so adding these
together, we obtain 0, and the Jacobi identity holds. So

(
Mn(K),[−,−]

)
is a Lie algebra.

This Lie algebra is also denoted by gln(K) (since it is the Lie algebra of the Lie group GLn(K)).

(iv) Let V be any vector space and consider the endomorphism space End(V ) of V . We similarly define
the bracket [−,−] : End(V ) × End(V ) → End(V ) by [S,T ] = S ◦ T − T ◦ S. This defines a Lie
algebra, denoted by gl(V ).

(v) Consider the linear subspace L =
{
A ∈ Mn(K) : tr(A) = 0

}
⊆ Mn(K) of matrices with zero trace.

Since the trace is linear and satisfies tr(AB) = tr(BA), the restriction of the Lie bracket from
gln(K) is closed on L since tr

(
[A,B]

)
= tr(AB−BA) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0.

Thus, L is again a Lie algebra, denoted by sln(K) (again, since it is the Lie algebra of the Lie
group SLn(K)).

(vi) Let L =
{
A ∈ Mn(K) : aij = 0 for all i > j

}
be the set of non-strictly upper triangular matricies

over K. Again, the Lie bracket from gln(K) is closed on L since the product and sum of upper
triangular matricies is again upper triangular, so L is again a Lie algebra, denoted by bn(K).

(vii) Let L =
{
A ∈ Mn(K) : aij = 0 for all i ≥ j

}
be the set of strictly upper triangular matricies over

K. Again, L is a Lie algebra, denoted by un(K).

△

1.1 Structure Constants
Let L be a Lie algebra, and let e1, . . . ,en be a basis of L. Then, for a,b ∈ L, we may express them as
linear combinations of the basis elements and use the linearity of the Lie bracket to obtain:

[a,b] =

∑
i

αiej ,
∑
j

βjej


=
∑
i,j

αiβj [ei,ej ]

Removing the diagonal elements and combining the antisymmmetric combinations, this simplifies to:

=
∑
i,j

(αiβj − βiαj)[ei,ej ]

If we compute the Lie brackets [ei,ej ] of the basis elements, then we can compute any other Lie bracket
[a,b] using this formula.

Example. Consider the space gl2(R) with basis

e1 = E11 =

[
1 0
0 0

]
e2 = E12 =

[
0 1
0 0

]
e3 = E21 =

[
0 0
1 0

]
e4 = E22 =

[
0 0
0 1

]
Applying the Lie bracket to pairs of these basis elements, we have:

[e1,e1] = 0

[e2,e1] = −e2

[e3,e1] = e3

[e4,e1] = 0

[e1,e2] = e2

[e2,e2] = 0

[e3,e2] = e4 − e1

[e4,e2] = −e2

[e1,e3] = −e3

[e2,e3] = e1 − e4

[e3,e3] = 0

[e4,e3] = e3

[e1,e4] = 0

[e2,e4] = e2

[e3,e4] = −e3

[e4,e4] = 0

Lie Algebras | 2



MAH453 1.1 Structure Constants

(Since the Lie bracket is anticommutative and alternating, we only really need to compute the 6 entries
above the diagonal.)

Let
A =

[
1 2
3 4

]
= 1e1 + 2e2 + 3e3 + 4e4

B =

[
5 −6
−7 8

]
= 5e1 − 6e2 − 7e3 + 8e4

By direct computation, the Lie bracket [A,B] is given by:

[A,B] = AB −BA

=

[
−9 10
−13 14

]
−
[
−13 −14
17 18

]
=

[
4 24

−30 −4

]
Alternatively, the formula yields:

[A,B] =
(
1 · (−6)− 5 · 2

)
[e1,e2] + (1 · (−7)− 5 · 3)[e1,e3] + (1 · 8− 5 · 4)[e1,e4]

+
(
2 · (−7)− (−6) · 3

)
[e2,e3] +

(
2 · 8− (−6) · 4

)
[e2,e4] +

(
3 · 8− (−7) · 4

)
[e3,e4]

= −16[e1,e2]− 22[e1,e3]− 12[e1,e4] + 4[e2,e3] + 40[e2,e4] + 52[e3,e4]

= −16e2 + 22e3 + 4(e1 − e4) + 40e2 − 52e3

= 4e1 + 24e2 − 30e3 − 4e4

=

[
4 24

−30 −4

]
△

Since [ei,ej ] ∈ L, these brackets themselves can also be expressed in the basis as:

[ei,ej ] =
∑
k

ckijek

The coefficients ckij are called the structure constants of L with respect to the basis e1, . . . ,en.

Example. In the above example, the Lie brackets are:

[e1,e2] = e2,

[e2,e3] = e1 − e4,

[e1,e3] = −e3

[e2,e4] = e2

[e1,e4] = 0

[e3,e4] = −e3

The corresponding structure constants are thus given by:

c112 = 0,

c113 = 0,

c114 = 0,

c123 = 1,

c124 = 0,

c134 = 0,

c212 = 1,

c213 = 0,

c214 = 0,

c223 = 0,

c224 = 1,

c234 = 0,

c312 = 0,

c313 = −1,

c314 = 0,

c323 = 0,

c324 = 0,

c334 = −1,

c412 = 0,

c413 = 0,

c414 = 0,

c423 = −1,

c424 = 0,

c434 = 0,

In more detail, [e1,e2] = 0e1 + 1e2 + 0e3 + 0e4, so the four corresponding structure constants (the first
row) are the coefficients 0, 1, 0, and 0. △

As a shortcut, the Lie bracket of elementary matrices may be computed as:

[Eij ,Ekℓ] = δjkEiℓ − δℓiEkj

Lie Algebras | 3



MAH453 1.2 Homomorphisms

1.2 Homomorphisms
Let L1 and L2 be Lie algebras over a field K. A function ϕ : L1 → L2 is a Lie algebra homomorphism if:

(i) ϕ is K-linear;

(ii) ∀x,y ∈ L1, ϕ
(
[x,y]L1

)
=
[
ϕ(x),ϕ(y)

]
L2

.

That is, a Lie algebra homomorphism is a homomorphism of the underlying vector space that preserves
the Lie bracket.

Given a basis {ei}ni=1 of L1, it follows from the previous formula [a,b] =
∑

i,j αiβj [ei,ej ] that, to show
property (ii), it suffices to verify that ϕ preserves the Lie brackets [ei,ej ] of the basis elements.

If ϕ is furthermore bijective (or equivalently, invertible), then ϕ is a Lie algebra isomorphism. If there
exists a Lie algebra isomorphism between L1 and L2, we say that L1 and L2 are isomorphic, and denote
this relation by L1

∼= L2.

Lemma 1.3. Let L1 and L2 be Lie algebras over a field K. Then, L1
∼= L2 if and only if there exist

bases B1 of L1 and B2 of L2 such that the structure constants ckij of L1 with respect to B1 are the same
as the structure constants of dkij of L2 with respect to B2.

Proof. For the forward implication, let B1 = (ei)
n
i=1 be a basis of L1 and let ϕ : L1 → L2 be a Lie algebra

isomorphism. Transport the basis B1 along ϕ to a basis B2 = (fi)
n
i=1 =

(
ϕ(ei)

)n
i=1

of L2.

Then,

ϕ
(
[ei,ej ]

)
= ϕ

(∑
k

ckijek

)
=
∑
k

ckijϕ(ek)

=
∑
k

ckijfk

We also have

ϕ
(
[ei,ej ]

)
=
[
ϕ(ei),ϕ(ej)

]
= [fi,fj ]

=
∑
k

dkijfk

Comparing coefficients, we have ckij = dkij for all i,j,k.

For the reverse implication, suppose there exist bases B1 = (ei)
n
i=1 of L1 and B2 = (fi)

n
i=1 of L2 such

that ckij = dkij for all i,j,k.

Define a linear map ϕ : L1 → L2 on basis elements by ei 7→ fi and linearly extending. This is a K-linear
isomorphism since B1 and B2 are bases. It remains to check that ϕ is a Lie algebra homomorphism.

ϕ
(
[ei,ej ]

)
= ϕ

(∑
k

ckijek

)
=
∑
k

ckijϕ(ek)

=
∑
k

ckijfk

Lie Algebras | 4



MAH453 1.3 Subalgebras

=
∑
k

dkijfk

= [fi,fj ]

= [ϕ(ei),ϕ(ej)]

■

Example. For any Lie algebra L, the identity map idL : L → L is trivially a Lie algebra isomorphism. △

Example. For any field K, the trace map tr : gln(K) → K is a Lie algebra homomorphism, where K is
equipped with the identically zero Lie bracket (i.e. is abelian):

(i) trace is linear;

(ii) for all A,B ∈ gln(K), we have tr
(
[A,B]

)
= 0 by basic properties of the trace, while [tr(A), tr(B)] = 0

since K is abelian. So the trace preserves the Lie bracket.

△

1.3 Subalgebras
Let L be a Lie algebra. A Lie subalgebra K of L is a subset K ⊆ L such that:

(i) K is a linear subspace of L;

(ii) K is closed under the Lie bracket: ∀a,b ∈ K, [a,b] ∈ K.

That is, K is a subset of L that is also a Lie algebra under (the restriction of) the Lie bracket of L.

Example. sln(K) (zero-trace matrices) is a Lie subalgebra of gln(K) (all matrices). Similarly, bn(K)
(upper triangular) and un(K) (strictly upper triangular) are subalgebras of gln(K).

Moreover, any strictly upper triangular matrix has zero trace, so un(K) ⊆ sln(K), and every strictly
upper triangular matrix is upper triangular, so also un(K) ⊆ bn(K). △

Example. Consider the space ⟨e2,e3⟩ in gl2(K). This is a linear subspace of gl2(K), but is not a Lie
subalgebra, since it is not closed under the Lie bracket: [e2,e3] = e1 − e4 /∈ ⟨e2,e3⟩. △

1.4 Ideals
Let L be a Lie algebra. An ideal I of L is a subset I ⊆ L such that:

(i) I is a linear subspace of L;

(ii) I absorbs Lie brackets with any element of L: ∀x ∈ L∀i ∈ I, [x,i] ∈ I.

Clearly, every ideal is a subalgebra, but the converse generally fails. Also, unlike for rings, there is no
distinction between left, right, and two-sided ideals, since if [x,i] ∈ I, then [i,x] = −[x,i] ∈ I, as I is a
linear subspace.

Example.

(i) sln(K) is an ideal of gln(K), since the trace of a Lie bracket is always zero.

(ii) Neither bn(K) nor un(K) are ideals of gln(K):

Let Mij be the elementary matrix with mij = 1 and zero elsewhere.

For the former, let A = M21 ∈ gln(K) and B = M11 ∈ bn(K). Then, [A,B] = M21M11−M11M21 =
M21 − 0 = M21 is not upper triangular.

Lie Algebras | 5



MAH453 1.4 Ideals

For the latter, let A = M21 ∈ gln(K) and B = M112 ∈ un(K). Then, [A,B] = M21M12−M12M21 =
M11 −M22 is diagonal, and not strictly upper triangular.

(iii) The previous counterexample for un(K) also shows that un(K) is not an ideal of sln(K), since M21

in particular has zero trace.

(iv) un(K) is an ideal of bn(K) since if A ∈ un(K) and B ∈ bn(K), then the diagonals of AB and BA
are zero, so [A,B] ∈ un(K).

△

Lemma 1.4. For any Lie algebra L,

(i) L is an ideal of L;

(ii) {0L} is an ideal of L;

(iii) The centre Z(L) = {z ∈ L : ∀x ∈ L, [z,x] = 0} is an ideal of L.

Proof.

(i) This is trivial since the Lie bracket is closed on L by definition.

(ii) {0L} is a linear subspace of L, and for any x ∈ L, [x,0] = [x,0 + 0] = [x,0] + [x,0], so [x,0] = 0.

(iii) The centre is a linear subspace of L since if α ∈ K: 0L ∈ Z(L) since [0,x] = 0; if z1,z2 ∈ Z(L),
then [z1 + z2,x] = [z1,x] + [z2,x] = 0+ 0 = 0; and if z ∈ Z(L) and λ ∈ K, [λz,x] = λ[z,x] = λ0 = 0.

Now, if z ∈ Z(L) and x ∈ L, [z,x] = 0 so [z,x] ∈ Z(L), as required.

■

Lemma 1.5. Let ϕ : L1 → L2 be a Lie algebra homomorphism. Then,

(i) im(ϕ) is a Lie subalgebra of L2;

(ii) ker(ϕ) is an ideal of L1.

Proof. From basic linear algebra, im(ϕ) is a subspace of L2 and ker(ϕ) is a subspace of L1.

(i) For any x,y ∈ im(ϕ), there exist x′,y′ ∈ L2 such that x = ϕ(x′) and y = ϕ(y′). Then, [x,y] =[
ϕ(x′),ϕ(y′)

]
= ϕ

(
[x′,y′]

)
∈ im(ϕ), so im(ϕ) is closed under the Lie bracket and is hence a Lie

subalgebra.

(ii) For any z ∈ L1 and x ∈ ker(ϕ), ϕ
(
[z,x]

)
=
[
ϕ(z),ϕ(x)

]
=
[
ϕ(z),0

]
= 0, so [z,x] ∈ ker(ϕ), as

required.

■

Example. Consider the Lie algebra homomorphism tr : gln(K) → K. The image is all of K, since for
α ∈ K, αE1,1 has trace α; and the kernel is, by definition, sln(K). So, by the previous lemma, sln(K)
is an ideal of gln(K) (as we have already verified before). △

Let L be a Lie algebra and I,J ⊆ L be ideals of L. We define the ideal sum as the pointwise sum:

I + J := {i+ j : i ∈ I,j ∈ J}

and the ideal Lie bracket as the subspace generated by all of the Lie brackets:

[I,J ] :=
〈
[i,j] : i ∈ I,j ∈ J

〉

Lie Algebras | 6



MAH453 1.5 Adjoint Homomorphism

Lemma 1.6. Let L be a Lie algebra and I,J ⊆ L be ideals of L. Then, I ∩J , I +J , and [I,J ] are ideals
of L.

Proof. From basic linear algebra, the three sets are linear subspaces of L.

(i) If x ∈ L and i ∈ I ∩ J , then [x,i] ∈ I since i ∈ I, and [x,i] ∈ J since i ∈ J . So [x,i] ∈ I ∩ J .

(ii) If x ∈ L and i ∈ I+J , then i = i′+j′ for some i′ ∈ I,j′ ∈ J . Then, [x,i] = [x,i′+j′] = [x,i′]+[x,j′].
Since I is an ideal, [x,i′] ∈ I, and similarly, [x,j′] ∈ J . So [x,i] ∈ I + J .

(iii) If x ∈ L and i ∈ [I,J ], then i is some linear combination of Lie brackets [i′,j′], so

[x,i] =

[
x,

n∑
k=1

ck[ik,jk]

]

=

n∑
k=1

ck
[
x,[ik,jk]

]
It remains to show that the

[
x,[ik,jk]

]
are in [I,J ]. By the Jacobi identity, for any x ∈ L, i ∈ I,

and j ∈ J , [
x,[i,j]

]
= −

[
j,[x,i]

]
−
[
i,[j,x]

]
=
[
[x,i],j

]
−
[
i,[j,x]

]
Since I is an ideal, [x,i] ∈ I, and similarly, [j,x] ∈ J . So

[
x,[i,j]

]
∈ [I,J ].

■

Example. For any Lie algebra L, [L,L] is an ideal of L called the derived subalgebra of L. △

1.5 Adjoint Homomorphism
Let L be a Lie algebra. In particular, L is a vector space, so we may also consider the Lie algebra gln(L)
of K-linear maps L → L. We define the adjoint homomorphism ad : L → gln(L) by

ad(x) = [x,−]

Note that ad(x) is an element of gln(L) since ad(x)(y) = [x,y] ∈ L, and ad(x) is linear:

ad(x)(λy1 + µy2) = [x,λy1 + µy2]

= λ[x,y1] + µ[x,y2]

= λ ad(x)(y1) + µ ad(x)(y2)

Lemma 1.7. The adjoint homomorphism is a Lie algebra homomorphism.

Proof. First, ad is linear:

ad(αx+ βy)(z) = [αx+ βy,z]

= α[x,z] + β[y,z]

=
(
α ad(x) + β ad(y)

)
(z)

and ad also preserves the Lie bracket:

ad
(
[x,y]

)
(z) =

[
[x,y],z

]
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= −
[
z,[x,y]

]
=
[
x,[y,z]

]
+
[
y,[z,x]

]
=
[
x,[y,z]

]
−
[
y,[x,z]

]
= ad(x)

(
ad(y)(z)

)
− ad(y)

(
ad(x)(z)

)
=
(
ad(x) ◦ ad(y)− ad(y) ◦ ad(x)

)
(z)

=
[
ad(x), ad(y)

]
(z)

■

Lemma 1.8. The kernel of the adjoint homomorphism is the centre of L:

ker(ad) = Z(L)

Proof. By definition, the centre is the collection of all z ∈ L such that [z,x] = 0 for all x ∈ L. That is,
all the z ∈ L such that ad(z) is the zero map, which is precisely the kernel of ad. ■

1.6 Quotient Algebras
The next standard algebraic construction is the quotient. As with rings, we will only obtain a Lie algebra
when quotienting by an ideal.

Let V be a vector space, and W ⊆ V a linear subspace. Given v ∈ V , we define the associated coset of
W in V by:

v +W := {v + w : w ∈ W}

Lemma 1.9.

(i) x+W = y +W if and only if x− y ∈ W ;

(ii) Any two cosets are either disjoint or equal.

Proof.

(i) For forward implication, suppose x+W = y+W . Since x = x+0 ∈ x+W = y+W , x = y+w for
some w ∈ W . So x− y = w ∈ W . For the reverse implication, suppose x− y = w0 ∈ W . Then, for
any x+w ∈ x+W , x+w = (y+w0) +w = y+ (w0 +w) ∈ y+W , so x+W ⊆ y+W . Similarly,
for any y + w ∈ y +W , y + w = (x − w0) + w = x + (w − w0) ∈ x +W , so y +W ⊆ x +W . So
x+W = y +W .

(ii) If the cosets are not disjoint, then there exists z ∈ (x +W ) ∩ (y +W ), so y = x + w1 = y + w2.
Then, x− y = w2 − w1 ∈ W , so by the previous part, x+W = y +W .

■

We define the quotient V/W to be the set of cosets of V in W :

V/W := {v +W : v ∈ V,w ∈ W}

We define an addition ⊕ on V/W by:

(x+W )⊕ (y +W ) := (x+ y) +W

and a scalar multiplication by:
λ(x+W ) := (λx) +W
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These are well-defined, as different representatives of the cosets differ only by an element of W , which
is absorbed into the result. Under these operations, V/W inherits a vector space structure, with zero
element 0V/W = 0V +W = W .

Let L be a Lie algebra and I an ideal of L. We have that V/I is a vector space, but we can endow it
with a bracket operation as follows:

[x+ I,y + I] := [x,y] + I

This is well-defined since, if x+ I = x′ + I and y + I = y′ + I, then x = x′ + i1 and y = y′ + i2, and:

[x+ I,y + I] = [x,y] + I

= [x′ + i1,y
′ + i2] + I

= [x′,y′] + [x′,i2] + [i1,x
′] + [i1,i2] + I

Since I is an ideal, the three bracket on the right are absorbed into I:

= [x′,y′] + I

= [x′ + I,y + I]

Theorem 1.10. This operation defines a Lie bracket on L/I.

Proof.

(i) The bracket in L is bilinear, so the bracket in L/I is defined on representatives and thus inherits
bilinearity: [

(αx+ I)⊕ (βy + I),z + I
]
=
[
(αx+ βy) + I,z + I

]
= [αx+ βy,z] + I

=
(
α[x,z] + β[y,z]

)
+ I

= α
(
[x,z] + I

)
⊕ β

(
[y,z] + I

)
= α[x+ I,z + I]⊕ β[y + I,z + I]

and similarly in the second argument.

(ii) The bracket similarly inherits the alternating property:

[x+ I,x+ I] = [x,x] + I

= 0L + I

= 0L/I

(iii) The Jacobi identity also descends from the Lie bracket on L:[
x+ I,[y + I,z + I]

]
= [x,[y,z]] + I[

z + I,[x+ I,y + I]
]
= [z,[x,y]] + I[

y + I,[z + I,x+ I]
]
= [y,[z,x]] + I

By the Jacobi identity in L, [x,[y,z]]+ [z,[x,y]]+ [y,[z,x]] = 0L, so the sum of the three terms above
reduces to 0L + I = 0L/I .

■
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Let π : L → L/I be the natural quotient map x 7→ x+ I. Then,

π(x+ y) = (x+ y) + I

= (x+ I)⊕ (y + I)

= π(x)⊕ π(y)

and

π(λx) = (λx) + I

= λ(x+ I)

= λπ(x)

so π is linear; pi also preserves the Lie bracket:

π
(
[x,y]

)
= [x,y] + I

= [x+ I,y + I]

=
[
π(x),π(y)

]
so π is a Lie algebra homomorphism.

Theorem 1.11 (First Isomorphism Theorem). Let ϕ : L1 → L2 be a Lie algebra homomorphism. Then,

(i) im(ϕ) is a Lie subalgebra of L2;

(ii) ker(ϕ) is an ideal of L1;

(iii) L1/ ker(ϕ) ∼= im(ϕ)

Proof. Parts (i) and (ii) were proved in Lemma 1.5.

For (iii), let I = ker(ϕ) and define the map f : L1/I → L2 by f(x+ I) = ϕ(x). This is well-defined since
if x+ I = y + I, then x− y ∈ I = ker(ϕ)

f(x+ I) = ϕ(x)

= ϕ(x− y + y)

= ϕ(x− y) + ϕ(y)

= 0 + ϕ(y)

= ϕ(y)

= f(y + I)

f is also linear, since

f
(
(x+ I)⊕ (y + I)

)
= f

(
(x+ y) + I

)
= ϕ(x+ y)

= ϕ(x) + ϕ(y)

= f(x+ I) + f(y + I)

and

f
(
λ(x+ I)

)
= f

(
(λx) + I

)
= ϕ(λx)

= λϕ(x)

= λf(x+ I)
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f also preserves the Lie bracket:

f
(
[x+ I,y + I]

)
= f

(
[x,y] + I

)
= ϕ

(
[x,y]

)
=
[
ϕ(x),ϕ(y)

]
=
[
f(x+ I),f(y + I)

]
So f is a Lie algebra homomorphism.

Furthermore, f surjects onto the image of ϕ, since for any ϕ(x) ∈ im f , f(x+I) = ϕ(x), and f is injective
since

ker(f) = {x+ I ∈ L/I : f(x+ I) = 0}
= {x+ I ∈ L/I : ϕ(x) = 0}
= {x+ I ∈ L/I : x ∈ ker(ϕ)}
= {x+ I ∈ L/I : x ∈ I}
= {I}
= {0L/I}

So f witnesses the isomorphism L1/ ker(ϕ) ∼= im(ϕ). ■

Example. △

The other standard isomorphism theorems also hold for Lie algebras, their proofs being similar to the
corresponding proofs for rings:

Theorem 1.12 (Second Isomorphism Theorem). Let L be a Lie algebra, and I,J ⊆ L be ideals of L.
Then,

I + J

J
∼=

I

I ∩ J

Theorem 1.13 (Third Isomorphism Theorem). Let L be a Lie algebra, and I,J ⊆ L be ideals of L.
Then, J/I is an ideal of L/I, and,

L/I

J/I
∼= L/J

Theorem 1.14 (Correspondence Theorem). Let L be a Lie algebra, and I ⊆ L be an ideal of L. Then,
there is a bijection

{J : J ⊆ I is an ideal of L} ∼= {K : K is an ideal of L/I}

1.7 Direct Sums
Let L1 and L2 be Lie algebras, and consider the cartesian product of the underlying sets:

L1 × L2 =
{
(x,y) : x ∈ L1,y ∈ L2

}
The operations on L1 and L2 naturally descend pointwise to this product:

(x,y) + (x′,y′) := (x+ x′,y + y′)

λ(x,y) := (λx,λy)[
(x,y),(x′,y′)

]
:=
(
[x,y],[x′,y′]

)
Under these operations, this set is a Lie algebra, denoted by L1 ⊕L2 called the direct sum of L1 and L2.
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Lemma 1.15. Let L1 and L2 be Lie algebras. Then,

(i) [L1 ⊕ L2,L1 ⊕ L2] = [L1,L1]⊕ [L2,L2];

(ii) Z(L1 ⊕ L2) = Z(L1)⊕ Z(L2);

(iii)
{
(x,0) : x ∈ L1

}
is an ideal of L1 ⊕ L2, isomorphic to L1;

(iv)
{
(0,y) : y ∈ L2

}
is an ideal of L1 ⊕ L2, isomorphic to L2;

(v) The projections πi : L1 ⊕ L2 → Li are Lie algebra homomorphisms.

This algebra L1 ⊕ L2 is also called the external direct sum, since we have formed a new algebra from
two unrelated algebras L1 and L2. In constrast, the internal direct sum is defined as follows:

Let L1,L2 ⊆ L be subalgebras of a Lie algebra L such that:

(i) L1 ∩ L2 = {0L};

(ii) [L1,L2] = {0L}.

Then, the linear subspace L1 + L2 is naturally a Lie subalgebra of L since

[x+ y,x′ + y′] = [x,x′] + [x,y′] + [x′,y] + [y,y′]

= [x,x′] + [y,y′]

∈ L1 + L2

Lemma 1.16. The internal direct sum L1 + L2 is isomorphic to the external direct sum L1 ⊕ L2.

Proof. Define the map ϕ : L1 ⊕L2 → L1 +L2 by (x,y) 7→ x+ y. Linearity is clear, and for Lie brackets,
we have:

ϕ
([
(x,y),(x′,y′)

])
= ϕ

(
[x,y],[x′,y′]

)
= [x,y] + [x′,y′]

and [
ϕ(x,y),ϕ(x′,y′)

]
= [x+ y,x′ + y′]

= [x,x′] + [x,y′] + [x′,y] + [y,y′]

Since [L1,L2] = {0L}, the mixed brackets vanish and the two expressions are equal.

Then, ϕ is injective since if ϕ(x,y) = x+ y = 0, then x = −y ∈ L1 ∩L2 = {0L}, so x = y = 0, and ϕ has
trivial kernel. We also have that ϕ is surjective, since every element of x + y ∈ L1 + L2 has preimage
(x,y) ∈ L1 ⊕ L2. So ϕ is an isomorphism. ■

2 Representations

Let L be a Lie algebra over K. A representation of L is a Lie algebra homomorphism

ϕ : L → gl(V )

where V is a vector space over K. If ker(ϕ) is trivial, then ϕ is called faithful.

Example.

(i) Every matrix Lie algebra is “really” a faithful representation of the underlying abstract Lie algebra.
For instance, the abstract Lie algebra sl2(C) has basis elements e,h,f and Lie brackets [e,h] = −2e,
[e,f ] = h, and [f,h] = 2f , which we often represent as matrices.
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(ii) If L is a Lie subalgebra of gl(V ), then the inclusion ι : L → gl(V ) is a representation called the
natural representation of L.

(iii) The zero homomorphism ϕ : L → gl(V ) is the trivial representation of L.

(iv) The adjoint homomorphism ad : L → gl(L) is a representation called the adjoint representation of
L. This representation is faithful if and only if Z(L) = {0L}.

△

3 Soluble and Nilpotent Lie Algebras

3.1 Solubility
Lemma 3.1. Let L be a Lie algebra and I an ideal of L. Then, L/I is abelian if and only if [L,L] ⊆ I.

Proof. By definition, L/I is abelian if [x + I,y + I] = 0L/I for all x,y ∈ L, or equivalently, [x,y] + I =

0L/I = I. This holds if and only if [x,y] ∈ I, and since [L,L] =
〈
[x,y] : x,y ∈ L

〉
, this is equivalent to

[L,L] ⊆ I. ■

Corollary 3.1.1. The ideal I = [L,L] is the smallest ideal of L such that L/I is abelian.

The derived series of L is the sequence L(0),L(1),L(2), . . ., defined inductively as follows:

(i) L(0) = L;

(ii) L(k+1) =
[
L(k),L(k)

]
.

Lemma 3.2. For any k ∈ N, L(k) is an ideal of L, and L(0) ⊇ L(1) ⊇ L(2) ⊇ · · · .

Proof. We have already seen that [L,L] is an ideal of L, so the chain of containments follows by induction.

The Lie bracket of ideals is also an ideal, so L(k+1) =
[
L(k),L(k)

]
is an ideal of L(0) = L by induction. ■

A Lie algebra L is soluble if there exists n ∈ N such that

L(n) = {0L}

Example.

(i) If L is abelian, then L is soluble. This is immediate since L(1) = [L,L] =
〈
[x,y] : x,y ∈ L

〉
= ⟨0⟩ =

{0}.

(ii) L = bn(C) is soluble for all n ∈ N. The Lie bracket of any two upper tringular matrices is strictly
upper triangular. Continuing to take Lie brackets, the matrices gain an additional zero diagonal at
each step, and thus eventually all become the zero matrix after at most n iterations. So L(n) = {0},
and bn(C) is soluble.

(iii) Let L = gln(C). Since tr(AB) = tr(BA), [A,B] ∈ sln(C), so L(1) ⊆ sln(C). Conversely, sln(C) is
generated by the brackets [Eij ,Ejk] = Eik (the off-diagonal elements) and [Eij ,Eji] = Eii − Ejj

(the diagonal elements preserving zero trace), so sln(C) ⊆ L(1).

By the same argument, [sln(C),sln(C)] = sln(C), so L(k) = L(1) = sln(C) for all k ∈ N, and
sln(C) ̸= {0} for n ≥ 2. Thus, gln(C) and sln(C) are not soluble for n ≥ 2.

△
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Lemma 3.3. Let ϕ : L → L′ be a Lie algebra homomorphism. Then, for all n ∈ N,

ϕ(L(n)) = ϕ(L)(n)

Proof. We induct on n. For n = 0, ϕ(L(0)) = ϕ(L) = ϕ(L)(0). Now suppose the result holds for some
fixed arbitrary n. Then,

ϕ(L(n+1)) = ϕ
(
[L(n),L(n)]

)
=
[
ϕ(L(n)),ϕ(L(n))

]
= [ϕ(L)(n),ϕ(L)(n)]

= ϕ(L)(n+1)

■

Lemma 3.4.

(i) If L is soluble, then every Lie subalgebra of L is soluble.

(ii) If L is soluble, then every homomorphic image of L is soluble.

(iii) If I is an ideal of L such that L/I and I are soluble, then L is soluble.

(iv) If I and J are soluble ideals of L, then I + J is also soluble.

Proof.

(i) If L is a Lie subalgebra of L, then M (i) ⊆ L(i) for all i ∈ N, so if L is soluble, there exists n ∈ N
such that L(n) is trivial, so M (n) ⊆ L(n) must also be trivial.

(ii) Let ϕ : L → M be a Lie algebra homomorphism. Since ϕ(L(i)) = ϕ(L)(i). Since L is soluble,
L(n) = {0L} for some n ∈ N, so ϕ(L)(n) = ϕ(L(n)) = ϕ

(
{0L}

)
= {0M} is also soluble.

(iii) Since L/I is soluble, (L/I)(n) = {0} for some n ∈ N. Let π : L → L/I be the natural quotient
homomorphism. Then, {0} = (L/I)(n) = π(L)(n) = π(L(n)), so L(n) ⊆ ker(π) = I. Then, I is
soluble, so I(m) = {0} for some m ∈ N. So (L(n))(m) ⊆ {0}, and L is soluble.

(iv) By the, second isomorphism theorem,

I + J

J
∼=

I

I ∩ J

Since I/(I ∩J) = π(I), it is soluble by (ii). So (I +J)/J is also soluble, and hence I +J is soluble
by (iii).

■

3.2 Simple and Semisimple Lie Algebras
A non-abelian Lie algebra L is simple if it has no proper non-zero ideals. That is, the only ideals of L
are {0} and L.

Example.

(i) sln(C) is an proper non-zero ideal of gln(C) for n ≥ 2, so gln(C) is not simple for n ≥ 2. Also, for
n = 1, gl1(C) ∼= C is 1-dimensional over C and is hence abelian (and thus also non-simple).
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(ii) sl2(C) is simple.

Suppose otherwise that sl2(C) has a non-zero proper ideal I. Let

e1 =

[
0 1
0 0

]
, e2 =

[
0 0
1 0

]
, e3 =

[
1 0
0 −1

]
be a basis of sl2(C), with brackets [e1,e2] = e3, [e1,e3] = −2e1, and [e2,e3] = 2e2.

Suppose e1 ∈ I. Then, [e1,e2] = e3 ∈ I, and [e2,e3] = 2e2 ∈ I, so e2 ∈ I. So I = sl2(C). Through
similar considerations, if e2 ∈ I, then necessarily e1,e3 ∈ I, and if e3 ∈ I, then e1,e2 ∈ I. So any
non-zero ideal must be equal to sl2(C), so sl2(C) is simple.

△

Let L be a Lie algebra, and consider the set R of soluble ideals of L:

R = {I : I is a soluble ideal of L}

Let R ∈ R be an ideal of maximum dimension, which exists as L is finite-dimensional. For any I ∈ R,
I + R is a soluble ideal of L, and since R ⊆ I + R, dim(R) ≤ dim(I + R). But the dimension of R is
maximal, so dim(I + R) ≤ dim(R), so dim(I + R) = dim(R), which holds if and only if I ⊆ R. So R
contains every soluble ideal of L.

Moreover, R is unique, since if R′ ∈ R is another soluble ideal containing every soluble ideal of L, then
R′ ⊆ R, since R′ is soluble, and R ⊆ R′, since R is soluble.

Thus, for any Lie algebra L, there exists a unique soluble ideal of L that contains every soluble ideal of
L. This ideal is denoted by Rad(L), and is called the radical of L. Since the solubility of L implies the
solubility of every Lie subalgebra of L, L is soluble if and only if Rad(L) = L.

A Lie algebra L is semisimple if Rad(L) = {0L}. That is, if it has no non-zero soluble ideals.

Example.

(i) sl2(C) is semisimple.

(ii) gl2(C) is not semisimple.

△

Lemma 3.5. For any Lie algebra L, L/Rad(L) is semisimple.

Proof. Let K be a soluble ideal of L/Rad(L). By the correspondence theorem, there is a corresponding
ideal I of L with Rad(L) ⊆ I and I/Rad(L) = K. Since both K and Rad(L) are soluble, so is I. But
by the definition of a radical, I ⊆ Rad(I), so I = Rad(L). So K = {0}, as required. ■

Lemma 3.6. If L is a complex simple Lie algebra, then L is semisimple.

Proof. Suppose otherwise that L is not semisimple, so Rad(L) ̸= {0}. Since L is simple, it has no proper
non-zero ideals, and hence Rad(L) = L. So L is soluble, and L(1) = [L,L] = {0} (since L has no proper
non-zero ideals, and [L,L] = L contradicts solubility). But then, L is abelian, which contradicts that L
is simple. ■

3.3 Nilpotent Lie Algebras

The lower central series of L is the sequence L0,L1,L2, . . ., defined inductively as follows:

(i) L0 = L;

(ii) L(k+1) =
[
L,Lk

]
.
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Lemma 3.7. For any k ∈ N, Lk is an ideal of L, and L0 ⊆ L1 ⊆ L2 ⊆ · · · .

Proof. Identical to Lemma 3.2. ■

A Lie algebra L is nilpotent if there exists n ∈ N such that

Ln = {0L}

The connection to ordinary nilpotency of operators will be made explored later.

Example.

(i) If L is abelian, then L is nilpotent.

(ii) As seen earlier, if L = sln(C), [L,L] = L, so Lk = L and sln(C) is not nilpotent.

(iii) The Lie algebra L = u3(C), called the Heisenberg Lie algebra, is nilpotent. L = ⟨E12,E13,E23⟩, and
we have [E12,E13] = 0, [E12,E23] = E13, [E13,E23] = 0. Then, using the structure constants above,
[A,B] = αE13, so L1 = ⟨E13⟩C. Then, using the structure constants, we also have that [A,E13] = 0
for any A ∈ L, so L2 = [L,L1] =

[
L,⟨E13⟩

]
= {0}.

More generally, L = un(C) is nilpotent for all n ∈ N.

△

Lemma 3.8.

(i) If L is nilpotent, then every Lie subalgebra of L is nilpotent.

(ii) If L is nilpotent and non-trivial, then Z(L) is non-trivial.

(iii) If L/Z(L) is nilpotent, then L is nilpotent.

Theorem 3.9. Let L be a Lie algebra. Then, for all n ∈ N,

L(n) ⊆ Ln

Proof. We induct on n. For n = 0, L(0) = L ⊆ L = L0. Now, suppose the inclusion holds for some
arbitrary fixed n.

Since L(n) ⊆ L, every Lie bracket [x,y] ∈ [L(n),L(n)] also lies in [L,L(n)], so

L(n+1) = [L(n),L(n)]

⊆ [L,L(n)]

⊆ [L,Ln]

= Ln+1

■

Corollary 3.9.1. Every nilpotent Lie algebra is soluble.

Proof. If L is nilpotent, then Ln = {0} for some n ∈ N. Then, L(n) ⊆ Ln = {0}, and L is soluble. ■
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3.4 Weights
Let V be a vector space over a field K. Recall that a non-zero vector v ∈ V is an eigenvector for a linear
map T : V → V if there exists an eigenvalue λ ∈ K such that T (v) = λv.

Let V be a vector space and H be a Lie subalgebra of gl(V ). A non-zero vector v ∈ V is an eigenvector
for H if v is an eigenvector for every T ∈ H.

That is, v ∈ V is an eigenvector for H if for every T ∈ H, there exists λT ∈ K such that T (v) = λT v.
This induces a function λ : H → K that sends each transformation T ∈ H to its eigenvalue:

λ(T ) = λT

So equivalently, a non-zero vector v ∈ V is an eigenvector for H if there exists a function λ : H → K
such that T (v) = λ(T )v for all T ∈ H.

Now, given such a function λ, consider the set Vλ of all eigenvectors of H consistent with this function:

Vλ := {w ∈ V : ∀T ∈ H,T (w) = λ(T )w}

By the construction of λ, we have that v ∈ V , so V is non-empty. Then, for all T ∈ H, α ∈ K, and
x,y ∈ Vλ,

T (x+ y) = T (x) + T (y)

= λ(T )x+ λ(T )y

= λ(T )(x+ y)

so x+ y ∈ Vλ, and

T (αx) = λ(T )αx

so αx ∈ Vλ. So, Vλ is closed under vector addition and scaling. Also, 0 ∈ Vλ since the zero vector is
preserved under any linear transformation T and annihilates any scalar, so Vλ is a linear subspace of V .

Moreover, for any S,T ∈ H, α,β ∈ K, and w ∈ Vλ,

λ(αT + βS)w = (αT + βS)(w)

= αT (w) + βS(w)

= αλ(T )w + βλ(S)w

= (αλ(T ) + βλ(T ))w

so λ : H → K is linear.

Let V be a vector space over a field K and H be a Lie subalgebra of gl(V ). A weight of H is a linear
function λ : H → K such that the weight space Vλ is a non-trivial linear subspace of V .

Example. Consider L = gl3(C), and let H = b3(C) ⊆ L. A general element A ∈ H has the form

A =

a b c
0 d e
0 0 f


Then, the basis vector e1 is an eigenvector of this matrix:a b c

0 d e
0 0 f

10
0

 =

a0
0

 = a

10
0


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so e1 is an eigenvector for H. The associated weight λ : H → K is then given by

λ

a b c
0 d e
0 0 f

 = a

and the weight space Vλ is given by

Vλ = {ae1 : a ∈ K} = ⟨e1⟩

△

Example. Let L = sl3(C), and H = ⟨h1,h2⟩ ⊆ L, where

h1 =

1 0 0
0 −1 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 −1


We have: 1 0 0

0 −1 0
0 0 0

xy
z

 =

 x
−y
0


1 0 0
0 −1 0
0 0 0

xy
z

 =

 0
y
−z


By inspection,

• e1 is an eigenvector for

– h1 with eigenvalue 1;

– h2 with eigenvalue 0;

• e2 is an eigenvector for

– h1 with eigenvalue −1;

– h2 with eigenvalue 1;

• e2 is an eigenvector for

– h1 with eigenvalue 0;

– h2 with eigenvalue −1.

So, we may define three weights for each eigenvector by mapping h1 and h2 to the corresponding eigen-
values:

λ1(h1) = 1;

λ1(h2) = 0;

Vλ1
= ⟨e1⟩

λ1(h1) = −1;

λ1(h2) = 1;

Vλ2
= ⟨e2⟩

λ1(h1) = 0;

λ1(h2) = −1;

Vλ3
= ⟨e3⟩

△

Lemma 3.10. Let V be a vector space over a field K of characteristic char(K) = 0, L be a Lie subalgebra
of gl(V ), and I be an ideal of L. Then, for any weight λ : I → K, Vλ is L-invariant. That is, for every
T ∈ L,

T (Vλ) ⊆ Vλ

Lie Algebras | 18



MAH453 3.5 Engel’s Theorem

3.5 Engel’s Theorem
Let L be a Lie algebra. An element x ∈ L is ad-nilpotent if there exists n ∈ N such that the n-fold
iteration of ad(x) is the zero map:

ad(x)n = 0

That is, ad(x) is a nilpotent operator in the ordinary sense.

Lemma 3.11. If L is a nilpotent Lie algebra, then every element of L is ad-nilpotent.

Proof. Since L is nilpotent, there exists n ∈ N such that Ln = {0}, so for every x,y ∈ L, applying the
Lie bracket n times yields 0:

ad(x)n(y) = [x,[x, · · · [x︸ ︷︷ ︸
n

,y] · · · ]] = 0

■

The question is, does the converse hold?

Lemma 3.12. Let V be a vector space, and L a Lie subalgebra of gl(V ). If x ∈ L is nilpotent as a linear
map, then it is ad-nilpotent.

Proof. Since x is nilpotent, there exists n such that xn = 0. For any y ∈ L, consider the 2n-fold iteration
of ad(x). By induction, we can prove that:

ad(x)2n(y) =

2n∑
i=1

αix
iyx2n−i

for some coefficients αi ∈ K. The factor x2n−i vanishes on the first half of the sum, while xi vanishes
over the second, so the entire sum vanishes, and x is ad-nilpotent. ■

Lemma 3.13. Let V be a vector space, and L be a Lie subalgebra of gl(V ) such that every element of L
is nilpotent. Then, there exists a non-zero vector v such that v on all of L:

∀x ∈ L, x(v) = 0

Theorem 3.14 (Engel’s Theorem for Subalgebras of gl(V )). Let V be a vector space, and L be a Lie
subalgebra of gl(V ) such that every element of L is nilpotent. Then, there exists a basis of V such that
the matrix of every element of L is strictly upper triangular. In particular, L is nilpotent.

Theorem 3.15 (Engel’s Theorem). Let L be a Lie algebra. If every element of L is ad-nilpotent, then
L is nilpotent.

Proof. Consider the map ad : L → ad(L) ⊆ gl(L). For every x ∈ L, ad(x) is nilpotent, so by the previous
theorem, ad(L) is nilpotent. Then, ad(L) ∼= L/ ker(ad) = L/Z(L) is nilpotent, so L is nilpotent. ■

3.6 Lie’s Theorem
Lemma 3.16. Let L = bn(C). Then, [L,L] = un(C).

Theorem 3.17. Let V be a vector space over C and L be a Lie subalgebra of gl(V ). If L is soluble,
there exists an eigenvector for L. That is, there exists a non-zero v ∈ V such that for every x ∈ L, there
exists λx such that x(v) = λxv.

Theorem 3.18 (Lie’s Theorem). Let V be a vector space over C, and L be a soluble Lie subalgebra of
gl(V ). Then, there exists a basis of V such that the matrix of every element of L is upper triangular.

Lie Algebras | 19



MAH453 The Killing Form and Cartan’s Criteria

Corollary 3.18.1. Let V be a vector space over C, and L be a soluble Lie subalgebra of gl(V ). If
x ∈ [L,L], then x is nilpotent.

Corollary 3.18.2. Let L be a Lie algebra over C. Then, L is soluble if and only if [L,L] is nilpotent.

4 The Killing Form and Cartan’s Criteria

4.1 Jordan Decomposition
In this section, V is a vector space over C.

Let x : V → V be a linear map. Then, there exist linear maps d : V → V and n : V → V such that

(i) x = d+ n;

(ii) d is diagonalisable and n is nilpotent;

(iii) dn = nd.

Such a decomposition x = d+ n is called a Jordan decomposition of x.

Lemma 4.1. The Jordan decomposition of x : V → V is unique. Moreover, there exist polynomials
p,q ∈ C[t] without constant terms such that p(x) = d and q(x) = n.

Let B be a basis of V such that the matrix D = [d]B of d in B is diagonal. Let d be the linear map whose
matrix with respect to B is the complex conjugate D of D. Then, there exists p̃ ∈ C[t] such that p̃(x) = d.

Lemma 4.2. Let x ∈ gl(V ). If x = d+ n is its Jordan decomposition, then

ad(x) = ad(d) + ad(n)

Lemma 4.3. For any A,B,C ∈ gl(V ),

tr
(
[A,B]C

)
= tr

(
A[B,C]

)
Theorem 4.4. Let L be a Lie subalgebra of gl(V ). If tr(x ◦ y) = 0 for all x,y ∈ L, then L is soluble.

Corollary 4.4.1. Let L be a complex Lie algebra. Then, L is soluble if and only if for all x ∈ L and
y ∈ [L,L],

tr
(
ad(x) ◦ ad(y)

)
= 0

4.2 The Killng Form
Let L be a complex Lie algebra. The Killing form on L is the map k : L× L → C defined by

k(x,y) := tr
(
ad(x) ◦ ad(y)

)
Lemma 4.5. The Killing form is a symmetric bilinear form. Moreover,

k
(
[x,y],z

)
= k

(
x,[y,z]

)
Theorem 4.6 (Cartan’s First Criterion). Let L be a complex Lie algebra. Then, L is soluble if and only
if k(x,y) = 0 for all x ∈ L and y ∈ [L,L].

Lemma 4.7. Let L be a complex Lie algebra and I be an ideal of L. Then, the restriction of the Killing
form k of L to I is the Killing form kI on I (i.e. the Killing form on I when I is considered as a complex
Lie algebra itself); for all x,y ∈ I,

k(x,y) = kI(x,y)
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Let τ be a symmetric bilinear form on a vector space V and let W be a linear subspace of V . We define
the orthogonal complement W⊥ of W in V to be:

W⊥ :=
{
v ∈ V : ∀w ∈ W, τ(v,w) = 0

}
Lemma 4.8. The set W⊥ is a linear subspace of V .

In particular, the subspace V ⊥ is called the radical of τ .

The form τ is non-degenerate if its radical V ⊥ = {0V } is trivial. Note that for a symmetric bilinear
form, positive-definiteness (τ(x,x) ̸= 0 whenever x ̸= 0) implies non-degeneracy.

Recall that for a fixed basis B = e1, . . . ,en, a bilinear form τ is uniquely determined by the matrix
[τ ]B =

(
τ(ei,ej)

)
, and vice versa. When τ is symmetric matrix, this matrix is symmetric, and τ is

non-degenerate if and only if det
(
[τ ]B

)
̸= 0.

A basis B of V is orthonormal if τ(ei,ei) = 1 and τ(ei,ej) for all i ̸= j.

Lemma 4.9. For an non-degenerate symmetric bilinear form τ and a linear subspace W of V ,

dim(V ) = dim(W ) + dim(W⊥)

Moreover, if W ∩W⊥ = {0}, then V = W ⊕W⊥, (W⊥)⊥ = W , and the restrictions of τ to W and W⊥

are non-degenerate.

We are interested in the orthogonal complements of ideals with respect to the Killing form.

Lemma 4.10. Let L be a complex Lie algebra, and I an ideal of L. Then, the ortheogonal complement

I⊥ = {x ∈ L : ∀i ∈ I, k(x,i) = 0}

is an ideal of L.

Proof. The orthogonal complement is always a linear subspace, so it remains to verify that I⊥ absorbs
Lie brackets with any element of L.

Let x ∈ I⊥, y ∈ L, and z ∈ I. Since I is an ideal, [y,z] ∈ I, so

k
(
[x,y],z

)
= k

(
x,[y,z]

)
= 0

so [x,y] is orthogonal to z ∈ I, and is hence in I⊥. ■

Theorem 4.11 (Cartan’s Second Criterion). Let L be a complex Lie algebra. Then, L is semisimple if
and only if its Killing form k is non-degenerate.

Lemma 4.12. Let L be a semisemple complex Lie algebra and I be an ideal of L. Then,

(i) I ∩ I⊥ = {0};

(ii) L = I ⊕ I⊥ as Lie algebras;

(iii) I and I⊥ are semisimple as complex Lie algebras.

Theorem 4.13. Let L be a complex Lie algebra. Then, L is semisimple if and only if there exist simple
ideals L1,L2, . . . ,Lk ⊆ L such that L =

⊕k
i=1 Li.
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4.3 Derivations
Given a field K, a K-algebra A is a vector space over K endowed with an additional bilinear multipli-
cation operation A × A → A. Bilinearity is equivalent to multiplication distributing over addition and
compatibility with scalar multiplication in the vector space.

Example. Lie algebras are K-algebras, with multiplication given by the Lie bracket. △

Let U be a K-algebra. A linear map δ : U → U is a derivation if it satisfies the Leibniz law :

δ(ab) = aδ(b) + δ(a)b

for all a,b ∈ U . That is, δ satisfies an analogue of the product rule of differentiation.

We denote by Der(U) the set of derivations on U .

Lemma 4.14. The set Der(U) is a linear subspace of End(V ), and in particular, is a vector space over
K.

Lemma 4.15. Let L be a Lie algebra. Then, Der(L) is a LIe subalgebra of gl(L). In particular, Der(L)
is a Lie algebra with Lie bracket [a,b] = ab− ba.

Example. The adjoint homomorphism is a derivation: for any x,a,b ∈ L,

ad(x)
(
[a,b]

)
=
[
x,[a,b]

]
= −

[
a,[b,x]

]
−
[
b,[x,a]

]
=
[
a,[x,b]

]
+
[
[x,a],b

]
=
[
a, ad(x)(b)

]
+
[
ad(x)(a),b

]
△

For x ∈ L, we call ad(x) an inner derivation of L, and any other derivation an outer derivation.

Theorem 4.16 (Primary Decomposition). Let x ∈ gl(V ), and suppose the minimal polynomial of x
factorises as

(X − λ1)
a1 · · · (X − λr)

ar

where the eigenvalues λi are distinct, and ai ≥ 1. Then, V decomposes as a direct sum of x-invariant
subspaces Vi,

V =

r⊕
i=1

Vi

where Vi = ker(x− λi1V )
ai is the generalised eigenspace of x with respect to λi.

Theorem 4.17. Let L be a complex semisimple Lie algebra. Then, all derivations of L are inner. That
is,

ad(L) = Der(L)

Lemma 4.18. Let L be a complex Lie algebra, and δ ∈ Der(L) a derivation with Jordan decomposition
δ = dδ + nδ in gl(L). Then, dδ,nδ ∈ Der(L).

Corollary 4.18.1. Let L be a complex semisimple Lie algebra. Then, for each x ∈ L, there exists unique
elements d,n ∈ L such that:

(i) x = d+ n;

(ii) ad(d) is diagonalisable and ad(n) is nilpotent;

(iii) [d,n] = 0.
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Let L be a complex semisimple Lie algebra. Then, the decomposition of an x ∈ L into x = d+n as above
is called the abstract Jordan decomposition of x, d is the semisimple part of x, and n is the nilpotent part
of x. If n = 0, then x = d is semisimple, and if d = 0, then x = n is nilpotent.

Note that if L is a semisimple Lie subalgebra of gl(V ), for V a complex vector space, then there is a
potential ambiguity, in that every element of gl(V ) has its original Jordan decomposition as well as this
abstract Jordan decomposition. However, these actually coincide:

Theorem 4.19. Let L be a semisimple complex Lie algebra, and ϕ : L → gl(V ) a representation. Let
x = d+n be the abstract Jordan decomposition of x ∈ L. Then, the Jordan decomposition of ϕ(x) ∈ gl(V )
is ϕ(x) = ϕ(d) + ϕ(n).

5 Root Space Decompositions

5.1 Cartan Subalgebras
In this section, all the Lie algebras are complex semisimple.

Lemma 5.1. Suppose x1, . . . ,xn ∈ gl(V ) are diagonalisable. Then, there exists a basis of V such that
x1, . . . ,xn are diagonal if and only if they pairwise commute.

Let L be a Lie algebra. A Cartan subalgebra H is a Lie subalgebra of H such that

(i) H is abelian.

(ii) Every element h ∈ H is semisimple.

(iii) H is maximal with respect to (i) and (ii);

The existence of such a subalgebra is guaranteed, since {0} satisfies (i) and (ii). However, the following
lemma shows that we are guarantees more interesting Cartan subalgebras:

Lemma 5.2. A semisimple complex Lie algebra L contains a non-zero Cartan subalgebra.

At this point there is an obvious question - are Cartan subalgebras unique? The answer is no, but they
do all have the same dimension.

Given y ∈ L, we define the centraliser of y as the set:

CL(y) =
{
x ∈ L : [x,y] = 0

}
More generally, the centraliser of a subset Y ⊆ L is the set:

CL(A) =
{
x ∈ L : ∀y ∈ Y, [x,y] = 0

}
Lemma 5.3. For any y ∈ L and Y ⊆ L, the centralisers CL(y) and CL(Y ) are Lie subalgebras of L.

Proof. By construction, CL(y) = ker
(
ad(y)

)
and is thus a linear subspace of L. Now, suppose a,b ∈

CL(y). Then, [
y,[a,b]

]
= −

[
b,[y,a]

]
−
[
a,[b,y]

]
= −[b,0]− [a,0]

= 0

so [a,b] ∈ CL(y). CL(Y ) is closed under Lie brackets under the same reasoning, and is a linear subspace,
since CL(Y ) =

⋂
y∈Y CL(y) is an intersection of linear subspaces. ■
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Lemma 5.4. Let H be a Cartan subalgebra of L, and let h0 ∈ H. Then,

H ⊆ CL(H) ⊆ CL(h0)

Proof. Since H is abelian, H ⊆ CL(H). Moreover,

CL(H) =
⋂
h∈H

CL(h)

⊆ CL(h0)

■

Lemma 5.5. Let H be a Cartan subalgebra of L, and h0 ∈ H satisfying

dimCL(h0) ≤ dimCL(h)

for all h ∈ H. Then, CL(h0) = CL(H).

5.2 Dual Spaces
Given a vector space V over a field K, the dual space V ∗ of V is the set of all linear functionals V → K
equipped with the natural vector space structure of addition and scalar multiplication of linear maps.

Example. The weights of a subalgeba M are elements of M∗. △

Given a basis e1, . . . ,en of V , the dual basis f1, . . . ,fn : V → K of V ∗ is defined as:

fi(ej) = δij =

{
1 i = j

0 i ̸= j

For each v ∈ V , the evaluation map ϵv : V ∗ → K is defined by

ϵv(f) = f(v)

This map is linear and thus belongs to V ∗∗. The map ϵ : V → V ∗∗ : v 7→ ϵv is an isomorphism and
shows that V ∼= V ∗∗.

Given a bilinear form τ : V × V → K, we may define a linear map Φτ : V → V ∗ by ϕ(v) = τ(v,−),
with linearity of Φτ following from the bilinearity of τ . Conversely, given a linear map Φ : V → V ∗, we
may define a bilinear form τΦ : V × V → K by τΦ(u,v) = Φ(u)(v). These operations are inverse, in that
Φ = ΦτΦ and τ = τΦτ . Finally, if Φ is an isomorphism, then it has trivial kernel and τΦ is non-degenerate,
and vice versa; if τ is non-degenerate, then Φτ is an isomorphism.

5.3 Roots of L Relative to a Cartan Subalgebra H

Let L be a complex semisimple Lie algebra, and suppose that H is a Cartan subalgebra of L. Then, H
act on L via the adjoint map

ad(h) : L → L

for each h ∈ H.

Since H is abelian and consists of semisimple elements (i.e. ad(h) is diagonalisable for all h ∈ H), there
exists a basis of L consisting of common eigenvectors for all elements of H (rather, for the elements
ad(h), so this is an abuse of notation) If v is such a common eigenvector, then for each h ∈ H, there
exists α(h) ∈ C such that

ad(h)(v) = α(h)v
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By definition, α : H → C is a weight of H (really of ad(H) ∼= H, with the isomorphism coming from the
fact that L is semisimple), and so α ∈ H∗. Let Lα be the corresponding weight space of H, which is

Lα =
{
x ∈ L : ∀h ∈ H, [h,x] = α(h)x

}
̸= {0}

In particular, if α = 0,
L0 =

{
x ∈ L : ∀h ∈ H, [h,x] = 0

}
= CL(H)

Let Φ =
{
α ∈ H∗ : α ̸= 0,Lα ̸= {0}

}
. Then, Φ is a set of roots of L relative to H, and for each α ∈ Φ,

the corresponding root space is Lα.

By the primary decomposition theorem,

L = L0 ⊕
⊕
α∈Φ

Lα

Note that |Φ| is finite, since L is finite dimensional.

Lemma 5.6. Let α,β ∈ H∗. Then,

(i) [Lα,Lβ ] ⊆ Lα+β;

(ii) If α+ β ̸= 0, then k(L,α,Lβ) = 0;

(iii) L0 ∩ L⊥
0 = {0}, and so k

∣∣
L0

is non-degenerate.

Theorem 5.7. Let L be a complex semisimple Lie algebra and H be a Cartan subalgebra of L. Then,
H = CL(H).

Corollary 5.7.1. The root space decomposition of L relative H is

L = H ⊕
⊕
α∈Φ

Lα

5.4 Sets of Roots Relative to H

Let L be a complex semisimple Lie algebra and H be a Cartan subalgebra of L.

Lemma 5.8. For each non-zero h ∈ H, there exists α ∈ Φ with α(h) ̸= 0.

Corollary 5.8.1. The set of roots span the dual space H∗.

Proof. Suppose otherwise. Then, there exists a non-zero h ∈ H such that α(h) = 0 for all α ∈ Φ,
contradicting the previous lemma. ■

Lemma 5.9. If α ∈ Φ, then −α ∈ Φ.

Proof. Suppose otherwise there exists α ∈ Φ such that −α /∈ Φ. Then, for each β ∈ Φ∪{0}, k(Lα,Lβ) = 0
by Lemma 5.6. Thus Lα ⊆ L⊥ = {0}, so Lα = {0}, which is a contradiction. ■

Lemma 5.10. For each α ∈ Φ, there exists a non-zero tα ∈ H such that for all x ∈ Lα and y ∈ L−α,

[x,y] = k(x,y)tα

Moreover, k(tα,h) = α(h) for all h ∈ H.

Corollary 5.10.1. If α ∈ Φ, then Lα,L−α = ⟨tα⟩C.
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Fix a root α ∈ Φ and fix non-zero x ∈ Lα and non-zero y ∈ L−α such that [x,y] ̸= 0. We define the set

Mα =
〈
x,y,[x,y]

〉
C

The previous two results show that [x,y] = λtα, where λ = k(x,y) ̸= 0.

Lemma 5.11. Mα is a Lie subalgebra of L of dimension dim(Mα) = 3.

Lemma 5.12. For α ∈ Φ, α(tα) ̸= 0.

Since α(tα) ̸= 0, we have that k(tα,tα) = α(tα) ̸= 0, so we define:

eα := x, hα :=
2

k(tα,tα)
tα, fα =

2

k(tα,tα)k(x,y)
y

so
Mα = ⟨eα,hα,fα⟩C

Lemma 5.13. For every root α ∈ Φ, Mα
∼= sl2(C).

Lemma 5.14. For α ∈ Φ, tα = −t−α, hα = −h−α, and α(hα) = 2.

6 Representations

6.1 Modules
Let L be a Lie algebra over K. An L-module is a vector space V over K equipped with a bilinear map

· : L× V → V

compatible with the Lie bracket in that

[x,y] · v = x · (y · v)− y · (x · v)

Such a map is said to be an action of L on V . We often drop the · and write the action as multiplication.

An L-module V is trivial if x · v = 0 for all x ∈ L and v ∈ V .

If V is a vector space and L is a Lie subalgebra of gl(V ), then the map x · v := x(v) defines an action of
L on V .

Example. Let V = C3 and L = b3(C) ⊆ gl(C3). We define a bilinear map L × V → V by A · v = Av.
Then,

[A,B] · v = (AB −BA)v

= ABv −BAv

= A(Bv)−B(Av)

= A · (B · v)−B · (A · v)

so this map is an action of L on V . △

Lemma 6.1. Let L be a Lie algebra and ϕ : L → gl(V ) be a representation of L. Then, V is an L-module
under the action defined by x · v := ϕ(x)(v).

Conversely, if V is an L-module, then there is a corresponding representation ϕ : L → gl(V ) defined by
ϕ(x)(v) := x · v.

Let L be a Lie algebra and V be an L-module. An L-submodule of V is a linear subspace W of V which
is also an L-module under the same action x · v as for V .

To check that W is a submodule of an L-module V , it suffices to check that W is L-invariant.
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Example. Let V = C3 and L = b3(C) ⊆ gl(C3) as above, and consider the linear subspace W = ⟨e1⟩ ⊆ V .
Then, for any A ∈ L and v ∈ W ,

Av =

a b c
0 d e
0 0 f

x0
0

 =

ax0
0

 ∈ W

so W is an L-submodule of V . △

Example. Let V and L be as above, and let U = ⟨e1,e2⟩ ⊆ V . Then, for any A ∈ L and v ∈ U ,

Av =

a b c
0 d e
0 0 f

xy
0

 =

ax+ by
dy
0

 ∈ U

so U is also an L-submodule of V . △

Let L be a Lie algebra and V,W be L-modules. An L-module homomorphism from V to W is a linear
map ϕ : V → W such that

x · ϕ(v) = ϕ(x · v)

for all x ∈ L and v ∈ V . If ϕ is further an isomorphism of vector spaces, then it is an L-module
isomorphism. As usual, we say that V and W are isomorphic if there exists an L-module isomorphism
between them, and we write V ∼= W to denote for this relation.

Let L be a Lie algebra and V an L-module. Then, V is the direct sum of U and W if V = U ⊕W as
vector spaces, and both U and W are L-submodules of V .

One may verify that if we define an external direct sum of two L-modules U and W by the action
x · (u+w) = x · u+ x ·w on the vector space U ⊕W , we obtain an L-module isomorphic to the internal
direct sum.

A L-module V is irreducible or simple if V is non-trivial and has no proper non-zero submodules. That
is, the only submodules of V are {0} and V .

An L-module V is completely reducible if for any L-submodule W of V , there exists an L-submodule W ′

of V such that V = W ⊕W ′.

A module V is indecomposable if it cannot be expressed as the direct sum of two non-zero proper L-
submodules of V .

Lemma 6.2. For any L-module V , irreducibility implies indecomposability, but not the converse in
general.

Theorem 6.3 (Weyl’s Theorem). A non-zero module of a semisimple complex Lie algebra is completely
reducible.

6.2 Representation Theory of sl2(C)
In this section, we classify the irreducible sl2(C)-modules. As usual, let e = E12,h = E11 − E22,f = E21

be the standard basis of sl2(C).

Consider the vector space C[X,Y ] of polynomials in two indeterminates X and Y . For each d ≥ 0, define
Wd to be the linear subspace of homogeneous degree-d polynomials in X and Y . A basis for Wd is then
given by Xd,Xd−1Y, . . .XY d−1,Y d, so dim(Wd) = d+ 1.

We define an action of sl2(C) on Wd as to make Wd into an sl2(C)-module. To do this, it is sufficient to
define the action of e, h, and f on p ∈ Wd:

e · p = X
∂p

∂Y
, h · p = X

∂p

∂X
− Y

∂p

∂Y
, f · p = Y

∂p

∂X
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So, on monomials, the actions are:

e ·XaY b = bXa+1Y b−1, h ·XaY b = (a− b)XaY b, f ·XaY b = bXa−1Y b+1

Theorem 6.4. Wd is an sl2(C) module with this action.

Lemma 6.5. For any two basis vectors v1 = XaY d−a and v2 = XbY d−b, there exists a sequence of
elements ℓ1, . . . ,ℓn ∈ sl2(C) such that ℓ1 · (ℓ2 · (· · · (ℓn · v1))) = v2.

Proof. It is sufficient to show that we may reach, starting from X, to Xd−1Y , to ... to Y d, and vice
versa. f ·X = dXd−1Y , so the element 1

df maps Xd to Xd−1Y . In general, to obtain Xd−a−1Y a+1 from
Xd−aY a, 1

d−af will do. Similarly, applying scaled copies of e moves from Y d to Xd:

0 Xd Xd−1Y Xd−2Y 2 · · · X2Y d−1 XY d−1 Y d 0

0

d

d

1

d−2

d−1

2

d−4

d−2

3

3

d−2

−d+4

2

d−1

−d+2

1

d

−d

0

e h f

■

Theorem 6.6. Each Wd for d ≥ 0 is irreducible.

We now want to show that any other irreducible sl2(C)-module is isomorphic to Wd for some d ≥ 0.
This completes the classification, since Wd is isomorphic to Wd′ if and only if d = d′, since they have
different dimensions otherwise.

Lemma 6.7. Let V be an sl2(C)-module, and let v ∈ V be an eigenvalue of h with eigenvalue λ. Then,

(i) Either h · (en · v) = (λ+ 2n)(en · v) or en · v = 0;

(ii) Either h · (fn · v) = (λ− 2n)(fn · v) or fn · v = 0.

We write xn · v for
xn · v := x · (x · (· · · (x︸ ︷︷ ︸

n

·v) · · · ))

Lemma 6.8. Let V be an sl2(C)-module. Then, V contains an eigenvector w for h such that e · w = 0
and fd · w ̸= 0 but fd+1 · w = 0 for some d ≥ 0.

Theorem 6.9. Let V be an irreducible sl2(C)-module. Then, V is isomorphic to Wd for some d ≥ 0.

6.3 The Importance of sl2(C) for Semisimple Complex Lie Algebras
In this section, let L be a complex semisimple Lie algebra, H be a Cartan subalgebra of L, and Φ be the
set of roots relative to H. Recall that we have the decomposition of L:

L = H ⊕
⊕
α∈Φ

Lα

We also defined Mα = ⟨eα,hα,fα⟩, a subalgebra of L isomorphic to sl2(C) for each root α ∈ Φ. L can
be viewed as an L-module using the adjoint representation x · y = [x,y], and since Mα is a subalgebra of
L, me may study L as an Mα-module by restricting adL to Mα (so the action is the same for x ∈ Mα,
y ∈ L).
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Lemma 6.10. If V is an Mα-submodule of L, then the eigenvalues of hα acting on V are integers.

We have already seen that −α ∈ Φ if α ∈ Φ. It turns out that these are the only multiples of α in Φ:

Theorem 6.11. For each α ∈ Φ, if cα ∈ Φ for some c ∈ C, then c = ±1.

We define the Mα-submodules of L

Uα := ⟨H,Lcα | cα ∈ Φ⟩C ⊆ L

and
Kα := ker(α) ⊆ L

Corollary 6.11.1. For any α ∈ Φ, Uα = Kα ⊕Mα.

Corollary 6.11.2. For any α ∈ Φ, dim(Lα) = 1.

If β ∈ Φ ∪ {0}, the α-root string through β is the space

S :=
⊕
c

Lβ+cα

where the sum is taken over all c ∈ Z such that β+ cα ∈ Φ. Since [Lγ ,Lδ] ⊆ Lγ+δ for any roots γ,δ ∈ Φ,
it follows that S is an Mα-submodule of L.

Strictly speaking, the proper definition of a root string should have the sum range over all c ∈ C such
that β + cα ∈ Φ, but it turns out that these give the same submodule of L, and we will only need to
work with the above definition.

Lemma 6.12. Let α,β ∈ Φ such that α ̸= β. Then,

(i) β(hα) ∈ Z;

(ii) There exist integers q,r ≥ 0 such that, given an integer k ∈ Z, β+kα ∈ Φ if and only if −r ≤ k ≤ q.
Moreover,

r − q = β(hα)

(iii) β − β(hα)α ∈ Φ.

Lemma 6.13. For α,β ∈ Φ, k(hα,hβ) ∈ Z, and k(tα,tβ) ∈ Q.

7 Root Systems and Classifications

7.1 Roots of L
Recall that we have an explicit isomorphism between H and H∗, given by

h 7→ k(h,−)

Furthermore, for every α ∈ Φ, there exists tα ∈ H such that α(−) = k(tα,−). Now, let ϕ ∈ H∗, and
denote by tϕ the element of H satisfying

tϕ 7→ k(tϕ,−) = ϕ(−)

We define a bilinear form (−,−) : H∗ ×H∗ → C by

(θ,ϕ) = k(tθ,tϕ)

Since k is a symmetric bilinear form on H, (−,−) is a symmetric bilinear form on H∗. In particular, for
α,β ∈ Φ, (α,β) = k(tα,tβ) ∈ Q.
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Since H∗ = ⟨Φ⟩C, there exist α1, . . . ,αℓ ∈ Φ that form a basis of H∗. We define the real subspace E of
H∗ by

E := R[α1, . . . ,αℓ]

Clearly, ϕ ⊆ E, and we may restrict (−,−) to E, so

(−,−) : E × E → R

is also a symmetric bilinear form. Then, there exists tθ ∈ H such that

(θ,θ) = k(tθ,tθ)

= tr
(
ad(tθ)

2
)

=
∑
γ∈Φ

γ(tθ)
2

=
∑
γ∈Φ

k(tγ ,tθ)
2

=
∑
γ∈Φ

(γ,θ)2

Since (γ,θ) ∈ Q ⊆ R, and (θ,θ) ≥ 0, (θ,θ) = 0 if and only if (γ,θ) = γ(tθ) = 0 for all γ ∈ Φ, which means
that θ = 0. So, E is in fact an inner product space, and in particular, a Euclidean space, since it is
finite-dimensional and real-valued.

Lemma 7.1. Let L be a semisimple complex Lie algebra with roots Φ. Then,

(i) E is a vector space over R with a real-valued inner product;

(ii) ⟨Φ⟩R = E, and 0 /∈ Φ;

(iii) If α ∈ Φ, then −α ∈ Φ;

(iv) If rα ∈ Φ for some r ∈ R, then r = ±1;

(v) For α,β ∈ Φ,

2
(β,α)

(α,α)
= k

(
tβ ,

2

k(tα,tα)
tα

)
= k(tβ ,hα)

= β(hα)

∈ Z

and
β − 2

(β,α)

(α,α)
α ∈ Φ

7.2 Root Systems
Let E be a finite-dimensional vector space over R, and let (−,−) : E × E → R be an inner product.

For every non-zero vector v ∈ E, we define the map σv : E → E by

σv(x) = x− 2
(x,v)

(v,v)
v

Geometrically, this is the reflection through the hyperplane orthogonal to v, since σv(v) = v − 2v = −v
and if x is orthogonal to v, then σv(x) = x− 0v = x.
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For u,v ∈ E, we abbreviate

⟨x,v⟩ := 2
(x,v)

(v,v)

Geometrically, ⟨α,β⟩ = 2∥α∥
∥β∥ cos(θ), where θ is the angle between α and β, and can thus be interpreted

as a normalised/rescaled projection of α onto β.

Also note that this mapping is linear in the first argument, but not the second.

Lemma 7.2. For x,y,v ∈ E,
(
σv(x),σv(y)

)
= (x,y).

A subset R ⊆ E is a root system in E if:

(R1) R is finite, 0 /∈ R, and ⟨R⟩R = E;

(R2) If α ∈ R, then cα ∈ R if and only if c = ±1;

(R3) If α ∈ R, then σα(R) ⊆ R (that is, R is closed under reflections through roots);

(R4) If α,β ∈ R, then ⟨α,β⟩ = 2 (α,β)
(β,β) ∈ Z;

Let L be a semisimple Lie algebra over C with H a Cartan subalgebra of L, and let Φ be the set of roots
of L relative to H. As before, let E = R[Φ], which is a real vector space with inner product induced by
the Killing form k.

For the rest of this section, let R be a root system in E.

Lemma 7.3. For α,β ∈ R with α ̸= ±β,

⟨α,β⟩⟨β,α⟩ ∈ {0,1,2,3}

Corollary 7.3.1. Let α,β ∈ R. Then,

(i) ⟨α,β⟩ = 0 if and only if a and b are orthogonal;

(ii) ⟨α,β⟩ > 0 if and only if ⟨β,α⟩ > 0.

Let α,β ∈ R, and without loss of generality, suppose (β,β) ≥ (α,α). Then,

∣∣⟨β,α⟩∣∣ = 2

∣∣(β,α)∣∣
(α,α)

≥ 2

∣∣(β,α)∣∣
(β,β)

=
∣∣⟨α,β⟩∣∣

We can now use the previous lemma to classify all the possible values of ⟨β,α⟩:

⟨α,β⟩ ⟨β,α⟩ θ (β,β)
(α,α) =

∥β∥2

∥α∥2

0 0 π
2 undefined

1 1 π
3 1

−1 −1 2π
3 1

1 2 π
4 2

−1 −2 3π
4 2

1 3 π
6 3

−1 −3 5π
6 3

Lemma 7.4. Let α,β ∈ R be such that (β,β) ≥ (α,α), and let θ be the angle between α and β. Then,

(i) If π
2 < θ < π, then α+ β ∈ R;
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(ii) If 0 < θ < π
2 , then α− β ∈ R.

Proof. σβ(α) = α − ⟨α,β⟩β ∈ R. If π
2 < θ < π, then from the table above, ⟨α,β⟩ = −1, so σβ(α) =

α+ β ∈ R. Similarly, if 0 < θ < π
2 , then ⟨α,β⟩ = 1, and σβ(α) = α− β ∈ R. ■
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A root system R is irreducible if R cannot be expressed as a disjoint union of two root systems R1 and
R2 satisfying (r1,r2) = 0 for r1 ∈ R1,r2 ∈ R2.

Example.

(i) A1 ×A1 is not irreducible since it is the union of two root system of type A1.

(ii) The root systems of type A2, B2, and G2 are all irreducible. Indeed, the only 1-dimensional root
system is of type A1, so the only reducible root system in R2 is A1 ×A1.

△

Lemma 7.5. Let R be a root system in E. Then, there exist non-empty subsets R1, . . . ,Rℓ of R such
that

(i) R =
⊔ℓ

i=1 Ri;

(ii) Ri is an irreducible root system in Ei = ⟨Ri⟩R;

(iii) E =
⊕ℓ

i=1 Ei, with Ei and Ej orthogonal for 1 ≤ i ̸= j ≤ ℓ.

Let R and R′ be root systems of E and E′ respectively. Then, R and R′ are isomorphic if there exists
an isomorphict ϕ : E → E′ such that

(i) ϕ(R) = R′;

(ii) For all α,β ∈ R,
〈
ϕ(α),ϕ(β)

〉
= ⟨α,β⟩.

7.3 Bases of Root Systems
Let R be a root system. A subset B ⊆ R is a base of R if:

(B1) B is a basis for E;
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(B2) We may express any β as a Z-linear combination of element of B:

β =
∑
α∈B

cαα

where cα ∈ Z for all α ∈ B. Moreover, either the coefficients cα are all non-negative, or all
non-positive.

The roots in a base B are then called simple.

Given (B1), the expression of β in (B2) is unique.

Let β be a root, and β =
∑

α∈B cαα be the unique expression of β in terms of the base B. Then, the
height of β is the sum of the coefficients of the expression:∑

α∈B
cα

If the height of β is positive, then we say that β is a positive root, and similarly, if the height of β is
negative, then β is a negative root. We denote by R+ and R− the sets of positive and negative roots,
respectively.

Note that a root cannot be simultaneously positive and negative, since that would require that every
coefficient cα is zero, in which case the root is zero, which is disallowed in the definition of a root system.
So R+ ∩R− = ∅.

Lemma 7.6. Let α1,α2 ∈ B be distinct simple roots. Then, the angle between them is at least π
2 .

Proof. Suppose otherwise. Then, α1 − α2 ∈ R. This is a Z-linear combination with both positive and
negative coefficients, contradicting (B2). ■

To find a base, we can pick any hyperplane in E = Rn which does not contain any roots. Then, label one
side of the hyperplane as positive, and the other as negative. Then, the n nearest roots to the hyperplane
form a base.

Theorem 7.7. Every root system has a base.

7.4 The Weyl Group of a Root System
By the definition of a root system, for each root α ∈ R, the corresponding reflection σα is an element of
GL(E), the group of invertible linear transformations on E.

The Weyl group of a root system R is the group

W = W (R) := ⟨σα | α ∈ R⟩ ≤ GL(E)

For each α ∈ R, we have that σα(R) ⊆ R, and since ⊆α is a reflection, it is an automorphism of E and
thus σα(R) is a permutation of the roots in R. So, there exists a group homomorphism

f : W → Sym|R|

sending each w ∈ W to its action on R, viewed as a permutation.

Lemma 7.8. The Weyl group is a subgroup of Sym|R|. In particular, W is finite.

Proof. It suffices to show that f is injective. If w ∈ ker(f), then f(w) = id, so w must have been the
identity on R. But since R spans E, w is also the identity on E. So ker(f) is trivial, and f is injective. ■
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Lemma 7.9. If α ∈ B, then the reflection σα permutes the set of positive roots apart from α.

Proof. Suppose β ∈ R+, and α ̸= β. Then,

β =
∑
γ∈B

cγγ

with every cγ non-negative. Since α ̸= β, there must exist γ ∈ B \ {α} such that αγ > 0 (otherwise, β is
a positive multiple of α, and ±α are the only multiples of α in R).

Now, σα(β) = β−⟨β,α⟩α, so the expansion of σα(β) differs from the expansion of β only in cα (by precisely
−⟨β,α⟩). In particular, cγ is still positive, so every coefficient is still positive, and σα(β) ∈ R+. ■

Lemma 7.10. Given α ∈ R, there exists g ∈ W0 := ⟨σα | α ∈ B⟩ and β ∈ B such that α = g(β).

Lemma 7.11. Suppose α ∈ R and g ∈ W . Then,

gσαg
−1 = σg(α)

Theorem 7.12. Let R be a root system, B be a base of R, and W be its Weyl group. Then,

(i) W = ⟨σα | α ∈ B⟩;

(ii) For each α ∈ R, there exist w ∈ W and αi ∈ B such that w(αi) = α.

(iii) If B′ is another base of R, then there exists g ∈ W such that B′ =
{
g(αi) : αi ∈ B

}
.

7.5 Cartan Matrices and Dynkin Diagrams
Let R be a root system in E with a base B = {α1, . . . ,αℓ}. The Cartan matrix of R is the ℓ× ℓ matrix

(
⟨αi,αj⟩

)
1≤i,j≤ℓ

=


2 ⟨α1,α2⟩ ⟨α1,α3⟩ · · · ⟨α1,αℓ⟩

⟨α2,α1⟩ 2 ⟨α2,α3⟩ · · · ⟨α2,αℓ⟩
⟨α3,α1⟩ ⟨α3,α2⟩ 2 · · · ⟨α3,αℓ⟩

...
...

...
. . .

...
⟨αℓ,α1⟩ ⟨αℓ,α2⟩ ⟨αℓ,α3⟩ · · · 2


(The diagonal is 2 since ⟨αi,αi⟩ = 2 (αi,αi)

(αi,αi)
= 2 for all i.)

Lemma 7.13. For any α,β ∈ R and g ∈ W ,〈
g(α),g(β)

〉
= ⟨α,β⟩

Proof. For any α,β,γ ∈ R, since orthogonal transformations like reflections preserve the inner product,

〈
σγ(α),σγ(β)

〉
= 2

(
σγ(α),σγ(β)

)(
σγ(β),σγ(β)

)
= 2

(α,β)

(β,β)

= ⟨α,β⟩

Since W is generated by the reflections σβ for β ∈ R, any g ∈ W is a composition of such reflections, so〈
g(α),g(β)

〉
= ⟨α,β⟩. ■

Lemma 7.14. The Cartan matrix of a root system is unique up to reordering.
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Example. (i) For the root system A2, we can take the base {α,β}. Since the angle between them is
π
2 , ⟨β,α⟩ = ⟨α,β⟩ = −1. So, the Cartan matrix is[

2 −1
−1 2

]

(ii) For the root system B2

(iii)

(iv)

(v)

△

We can encode the information of the Cartan matrix in a graph as follows.

The Dynkin diagram of a root system R it the graph ∆ = ∆(R) with vertex set given by the base B,
and the number of edges between α,β ∈ B given by dα,β := ⟨α,β⟩⟨β,α⟩. If dα,β > 1, then the two roots
α and β must have different lengths, and we notate the edges with an arrow pointing from the longer
root to the shorter one.

Example.

(i) From the Cartan matrix of A2, the Dynkin diagram is

α β

(ii) From the Cartan

(iii)

(iv)

(v)

△

Note that the Dynkin diagram of a root system R can be constructed just from the Cartan matrix of R,
and conversely, the Cartan matrix can be reconstructed from the Dynkin diagram, since dα,β determines
⟨α,β⟩ and ⟨β,α⟩ for all α,β ∈ B.

Theorem 7.15. Let R and R′ be root systems of E and E′ respectively. Then, R ∼= R′ if and only if
∆(R) = ∆(R′).

Lemma 7.16. A root system R is irreducible if and only if ∆(R) is connected.

Theorem 7.17. Let R be an irreducible root system with Dynkin diagram ∆(R). Then, ∆(R) is one of
the following types:

(i) An, n ≥ 1;

(ii) Bn, n ≥ 2;

(iii) Cn, n ≥ 3;

(iv) Dn, n ≥ 4;

(v) G2;

(vi) F4;

(vii) E6;
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(viii) E7;

(ix) E8.

Conversely, each such type occurs as the Dynkin diagram of a root system.
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7.6 The Classification of Semisimple Complex Lie Algebras
Theorem 7.18. Let L be a complex semisimple Lie algebra. If Φ1 and Φ2 are root system associated to
two Cartan subalgebras of L, then Φ1

∼= Φ2.

Corollary 7.18.1. If L1 and L2 are complex semisimple Lie algebras with root systems Φ1 and Φ2

respectively, then Φ1 ̸∼= Φ2 implies L1 ̸∼= L2.
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